n^2+(n+2)=130

Simple and best practice solution for n^2+(n+2)=130 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+(n+2)=130 equation:



n^2+(n+2)=130
We move all terms to the left:
n^2+(n+2)-(130)=0
We get rid of parentheses
n^2+n+2-130=0
We add all the numbers together, and all the variables
n^2+n-128=0
a = 1; b = 1; c = -128;
Δ = b2-4ac
Δ = 12-4·1·(-128)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{57}}{2*1}=\frac{-1-3\sqrt{57}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{57}}{2*1}=\frac{-1+3\sqrt{57}}{2} $

See similar equations:

| 143-x=287 | | 5(2x+6)=-33-4x | | 8–5x+6x=8 | | 3(x+1)=2x=7 | | 5(x–4)=5x+6 | | -2x-33=47 | | -2(k+5)=4 | | 39=x+9x+(9x+1) | | 6n=7-2n-14=5n+1 | | -37+9x=62 | | 135=1500(0.3)t | | 45-12x=93 | | 1.59p+0.29=5.07 | | 3^2x3x=81 | | 6÷8=9÷x-4 | | 4x-16=9/8 | | 6/8=9/x-4 | | 3(x+1)=2x+-12 | | -5x-8+6x=17+x | | 113.04=3.14d | | 2x+2=1024 | | 4775.94=3.14r^ | | 3x-15-6=21 | | 452.16=2(3.14)r | | X^2–10x+26=8 | | 8(y-4)-7=3(2y+1) | | -5x–10=-25 | | 5(x+1)(x+1)=625 | | 2+4x-1=5x+1-x | | 11304=3.14d | | 6n+4=-22 | | 7-3x=3-8x |

Equations solver categories